# IMO TIER III COMPLIANCE USER PERSPECTIVE

**MARPOL 2020 & STAKEHOLDER READINESS** 

MR. UPENDRA KUMAR DGM (I/C) Ship Building Services Technical & Offshore Division - SCI 2<sup>ND</sup> CIMAC CIRCLE OCT 05<sup>TH</sup> 2019 MUMBAI

### BACKGROUND

- MARPOL 73/78 "International Convention on the Prevention of Pollution from Ships" – Contains IMO Ship Pollution Rules
- 27<sup>th</sup> September 1997 Inclusion of Annex VI to the MARPOL Convention by "1997 Protocol"
- Annex VI "<u>Regulations for the Prevention of Air Pollution from Ships</u>"
- Sets limits for NOx and SOx emissions from Ship Exhausts (Regulations 13,14)
- Prohibits deliberate emissions of Ozone depleting substances from ships of 400GT & above
- Emission Standards FOR NOX are commonly referred to as Tier I, Tier II, Tier III standards

### AMENDMENTS

- 1997 Protocol Tier I Applicable to New Engines > 130 kW
  - Installed on vessels constructed on or after 1<sup>st</sup> January 2000
  - or which undergo a major conversion after that date
  - Also applicable to Fixed & floating rigs and to Drilling platforms
- 2008 Amendments Tier II , Tier III Adopted in October 2008
  - Tier II and Tier III NOx emission Standards for New Engine
  - Tier I NOx requirements for Pre-2000 Engines

### **EMISSION CONTROL AREAS**

Emission Control & Fuel Quality Requirements are broadly divided into –

#### **1. Global Requirements**

2. More Stringent requirements applicable to ships in **Emission Control Areas (ECA)** 

**Emission Control Area designated for** 

- SOx (Sulfur Oxides) and
- PM (Particulate Matter) or
- NOx (Nitrogen Oxides) or
- All Three Types

#### **EMISSION CONTROL AREAS**

#### • Existing Emission Control Areas Include:

|                                                                     | SOX            |                                   | NOX            |                     |                |
|---------------------------------------------------------------------|----------------|-----------------------------------|----------------|---------------------|----------------|
| LOCATION                                                            | <u>ADOPTED</u> | <u>ENTRY INTO</u><br><u>FORCE</u> | <u>ADOPTED</u> | ENTRY INTO<br>FORCE |                |
| 1. BALTIC SEA                                                       | 1997           | 2005                              | 2016           | 2021                |                |
| 2. NORTH SEA                                                        | 2005           | 2006                              | 2016           | 2021                | Z              |
| 3. NORTH<br>AMERICAN ECA<br>(incl most of US<br>& Canada coast)     | 2010           | 2012                              | 2010           | 2012                | FUTURE<br>AREA |
| 4. US Caribbean<br>ECA, incl Puerto<br>Rico & US Virgin<br>Islands) | 2011           | 2014                              | 2011           | 2014                | 5              |

SOx – ECA
NOx and SOx – ECA

ECA

Both NOx & SOx Reqs to Comply. NOx ECA Keel Laying after Jan 2016

ECA

NOx ECA Keel laying after JAN 2021

NOX – IMO Regulation 13

**SOX – IMO Regulation 14** 



#### NOx EMISSION STANDARDS

- Emission Limits of MARPOL Annex VI applicable to each Marine Diesel Engine with a Power output > 130 kW installed on a Ship
- Marine Diesel Engine <u>Any Reciprocating internal combustion engine</u> <u>operating on Liquid or Dual Fuel</u>

#### Not Applicable to –

- 1. Engines used solely for Emergencies
- 2. Engines on ships operating solely within waters of the state in which they're flagged\*\*
- **\*\***Subject to alternative NOx Control measure

#### **IMO TIER III** NOx EMISSION LIMITS

- Limits are dependent on Engine maximum operating speed (n / rpm)
- <u>Tier</u> of the engine is <u>dependent</u> on the <u>Date of Construction of the Vessel</u>.
   Date of Construction means <u>KEEL LAID</u>
- In case of Major modifications, with a non-identical or an additional engine, Standards of the Regulation at the Time of Modification will be applicable
- Tier I & II limits are global.

Tier III Standards applicable in NOx ECA areas designated by IMO <u>Regulations</u>

### **MAJOR CONVERSION**

A MODIFICATION on or after 1 JAN 2000 of a Marine diesel engine that has not already been certified to the standards of Tier I, II or III –

- **1) 2.1.1** The Engine is **Replaced** by Marine Diesel Engine or an **Additional** Marine Diesel Engine is Installed (or)
- **2) 2.1.2** Any Substantial Modification as defined in the revised NOx Technical Code 2008, is made to the engine (or)
- **3) 2.1.3** The MCR of the engine **is increased** by **more than 10%** compared to the MCR of the original certification of engine.

For a major conversion – Replacement / Addition – Standards in force at the time of Replacement / Addition shall Apply

### MAJOR CONVERSION – ON/AFTER 01.01.16

- On or After 1<sup>st</sup> JAN 2016 In case of REPLACEMENT ENGINES if it is not possible for such a replacement engine to meet standards of IMO Tier III regulations, then that replacement engine shall meet standards of Tier II regulations. <<u><Discussed in Slides 23, 24>></u>
- Guidelines are to be developed by the Organization to set forth the criteria when it is not possible to meet the Tier III standards. << <u>Discussed in 23, 24>></u>
- IN CASE OF 2.1.2 & 2.1.3 << <u>Refer Previous Slide</u>>>
- For Ships Constructed Prior 1 Jan 2000 **Tier I** Standards shall Apply
- For Ships Constructed After 1 Jan 2000 Standards in Force at the Time Ship was constructed will apply

#### **STANDARDS**

12

| Tier | Ship<br>constructi<br>on date on<br>or after | Total weighted cycle emission limit (g/kWh)<br>n = engine's rated speed (rpm) |                                                         |             |  |
|------|----------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------|-------------|--|
|      |                                              | n < 130                                                                       | n = 130 - 1999                                          | n ≥<br>2000 |  |
| I    | 1 January<br>2000                            | 17.0                                                                          | <u>45·n<sup>(-0.2)</sup></u><br>e.g., 720 rpm –<br>12.1 | 9.8         |  |
| II   | 1 January<br>2011                            | 14.4                                                                          | <u>44•n(-0.23)</u><br>e.g., 720 rpm – 9.7               | 7.7         |  |
| ш    | 1 January<br>2016                            | 3.4                                                                           | <u>9·n<sup>(-0.2)</sup></u><br>e.g., 720 rpm – 2.4      | 2.0         |  |

### HOW TO MEET – IMO **TIER II** STANDARDS

Tier II Standards are expected to be met by Combustion process Optimization

• The Parameters examined by Engine manufacturers include

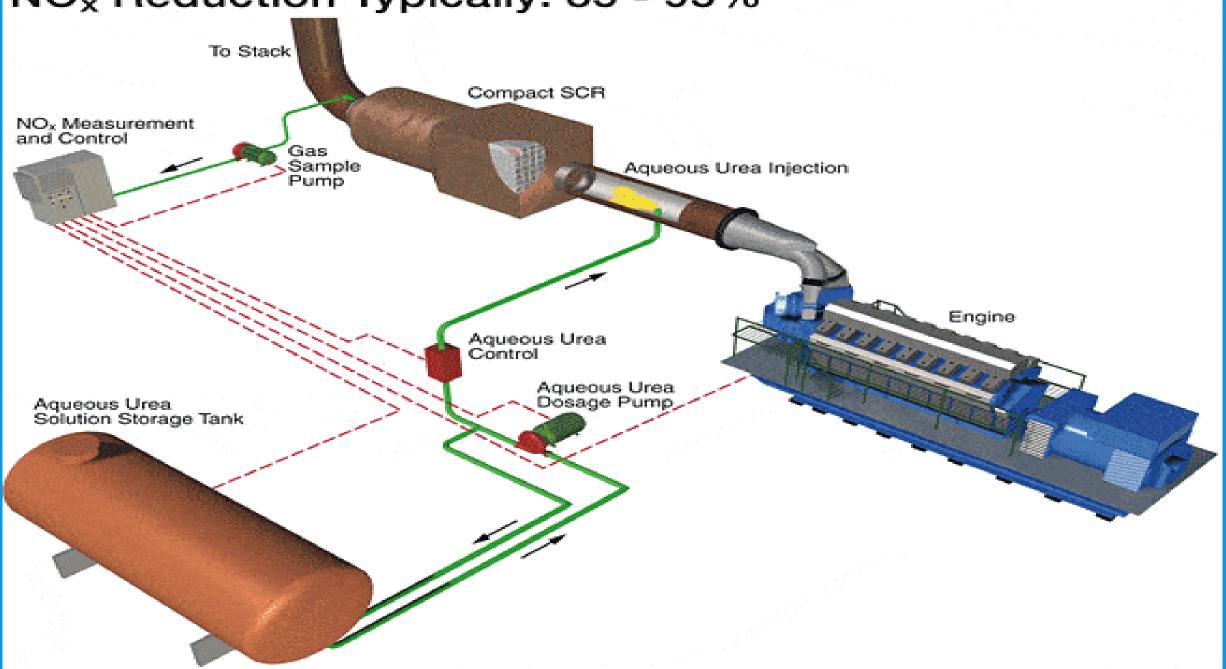
- 1. Fuel injection timing
- 2. Pressure & Rate / Rate shaping
- 3. Fuel nozzle flow area
- 4. Exhaust valve timing
- 5. Cylinder compression volume

### HOW TO MEET – IMO **TIER III** STANDARDS

- Achieving NOx Criteria in many cases is Beyond well known adjustments to Combustion process in 2 Stroke Diesel. They Require Add on Tech.
- Tier III Standards are expected to require following technologies
- 1. Water induction into the combustion process (via Fuel, Scavenging air or In-Cylinder)
- 2. Exhaust gas recirculation (EGR)
- 3. Selective Catalytic reduction (SCR)

#### **Other Technologies**

Low pressure Gas Engines, Duel Fuel Engines with LNG as a Fuel, Two Stage Turbocharging (Using Miller Cycle), etc.

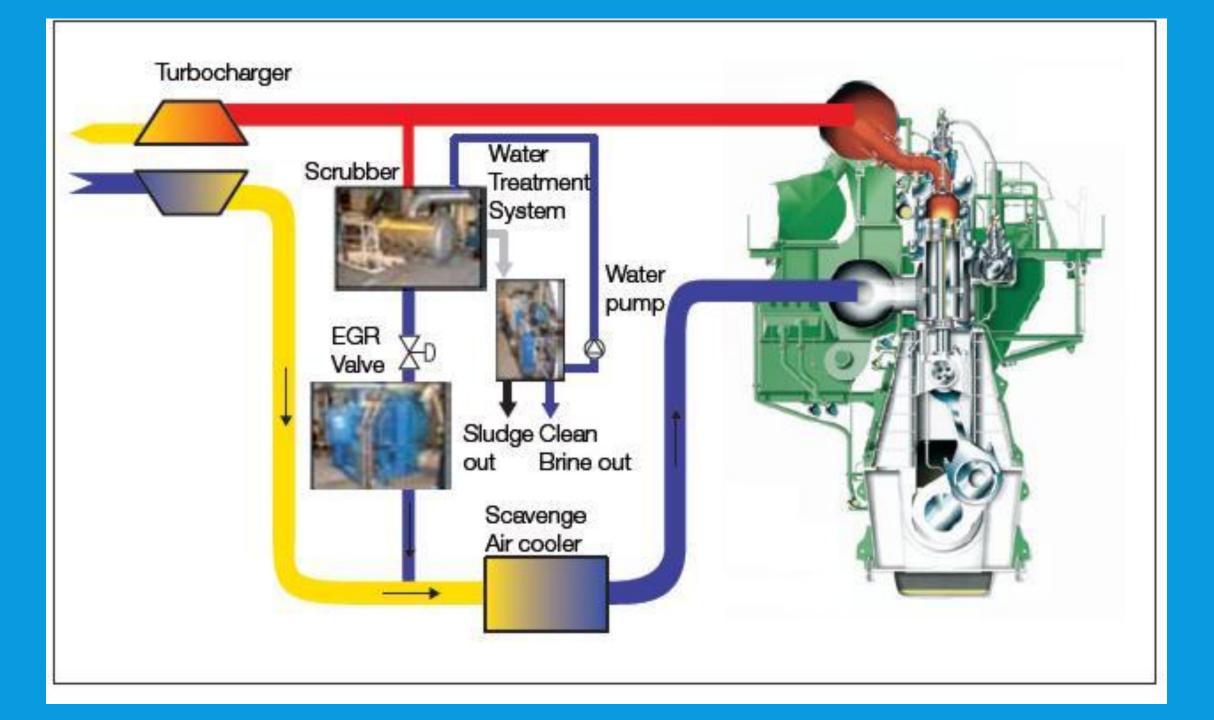

#### SCAVENGER AIR MOISTURIZING

- Air from the turbocharger, after passing through the compressor, has high temperature.
- Seawater is injected to this high temperature air for cooling and making it saturated. Distillation process makes it possible to use sea water instead of fresh water.
- Humidification of air is controlled by maintaining scavenge air temperature between 60-70 Deg C. Water in saturated air reduces the peak temperature as water has higher heat carrying capacity than air.
- Around 60% NOx reduction is achieved by this method. By using combination of other technologies such as EGR with Scavenge Air Moisturizing, NOx Tier III standards can be achieved.

### **SELECTIVE CATALYTIC REDUCTION (SCR)**

- In this system, urea or ammonia is injected in the exhaust gas before passing it through a unit, which consists of special catalyst layer, at a temperature between 300 and 400 Deg C.
- Chemical reaction between Urea/ammonia and NOx in exhaust gases reduces NOx (NO and NO2) to N2.
- SCR unit is installed between the exhaust manifold/receiver and the turbocharger.
- High efficiency turbocharger is required for this system as there is pressure drop across SCR Reactor.
- Engine load should be 40% and above, as NOx is reduced to N2 within specific temperature window ( 300-400 Deg C).

#### NO<sub>x</sub> Reduction Typically: 85 - 95%




#### SCR CHALLENGES

- Availability of UREA & Replenishment of UREA Solution
- Space for UREA tanks and Components of SCR
- Engine load has to be maintained above 40% as the chemical reaction of NOx to N2 happens in the window of 300~400°C

#### **EXHAUST GAS RECIRCULATION**

- In this technology, part of the exhaust gas after turbocharger is recirculated to scavenge receiver after passing it through the scrubber (exhaust gas washing) unit. Around 50-60% NOx reduction from Tier I is claimed by making use of EGR.
- <u>However discharge of cleaning water requires treatment like purification and</u> separating exhaust gas cleaning sludge. As some countries are against discharge of this water, re-using this water poses corrosion problem.
- NOx reduction takes place due to reduction in excess air (oxygen content) used for combustion, addition of CO<sub>2</sub> and water vapour reduces peak temperatures as both have higher specific heat than air.
- EGR system along with combination of one of the technologies such as altered (delayed) injection method, new design fuel valve, common rail injection principle, electronic engines , Scavenge Air Moisturizing, can be used to comply with Tier III standards.



#### EGR CHALLENGES

- Protection of Components from Highly corrosive Sulfuric Acid which is a byproduct
- Water Carry over from EGR scrubber should be avoided due to risk of contamination by Na2SO4 from Scrubber water
- Corrosion of Non Stainless Steel components such as EGR cooler housing, Cooler elements, Blower wheel, Pipe etc. Components have to be Non corrosive Stainless Steel.
- Installation of NAOH & EGR Sludge tanks
- Difficulties in controlling dousing amount of NaOH
- Installation of a Water Treatment System

#### WHERE DO WE STAND?

#### VESSEL BUILT <u>BEFORE 2016</u>

- If Vessel Built 2000 2011 For World wide trade including ECA – TIER I Standards
- If Vessel Built 2011 2016 For World wide trade including ECA – TIER II Standards
- If Major modification (Replacement/ Addition) after 2016 – To trade in ECA areas – Tier III Standards else TIER II

#### VESSEL BUILT <u>AFTER 2016</u>

- 1. Vessel Built after 2016 –To trade in North American ECA Or US Caribbean ECA area – THER III
- 2. Vessel Built after 2021 To Trade in Baltic Sea ECA & North Sea ECA area – TIER III

### EXEMPTION CRITERIA GUIDELINES MEPC 230(65)

- <u>Non Identical Replacement Engines not required to meet Tier III Standards :</u> <u>Following Criteria will be Considered for Exemption:</u>
- 1. Not Commercially Available
- 2. NOx Reduction Device
  - 1. Availability of Space
  - 2. Extensive Heat release could have an adverse impact
- 3. Non Feasibility of replacement due to other pertinent ship characteristics
  - 1. Drive Shafts, Reduction gears, Cooling Sys, Exhaust & Ventilation sys, Propeller Shafts
  - 2. Electrical Sys for Diesel Generators (Indirect Drive engines)
  - 3. Other Ancillary systems & equipment that would affect choice of Engine
- 4. Engine adjustment/ matching needed to meet boundary conditions & performance data necessary for SCR operation at all relevant mode points

### EXEMPTION CRITERIA GUIDELINES MEPC 230(65)

5. In case of Multi engine arrangement – Need to match a replacement engine within multi-engine arrangement. <<This is for Propulsion Engines >>

6. Structural Integrity shouldn't be compromised because of replacement

#### **CRITERIA NOT CONSIDERED**

1. Warranty Period/Life Expectancy

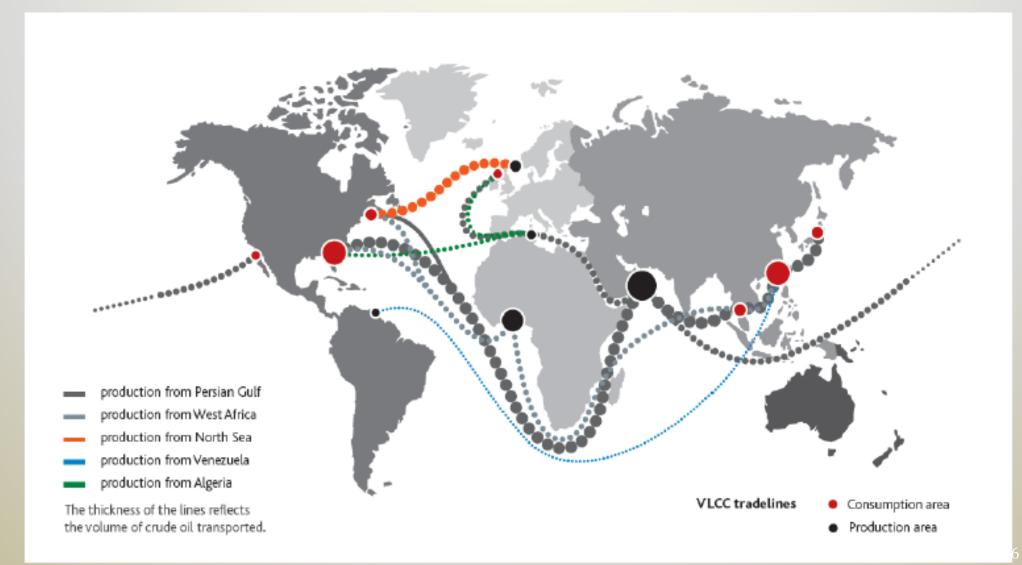
2. Cost

3. Production Lead time

24

SHIPOWNER to provide Evidence to ADMINISTRATION that a TIER III engine cannot be installed – Taking the provisions of these Guidelines

SHIPOWNER Should document search for Compliant Tier III engine & explain why closest available engine not appropriate w.r.to Size / Performance

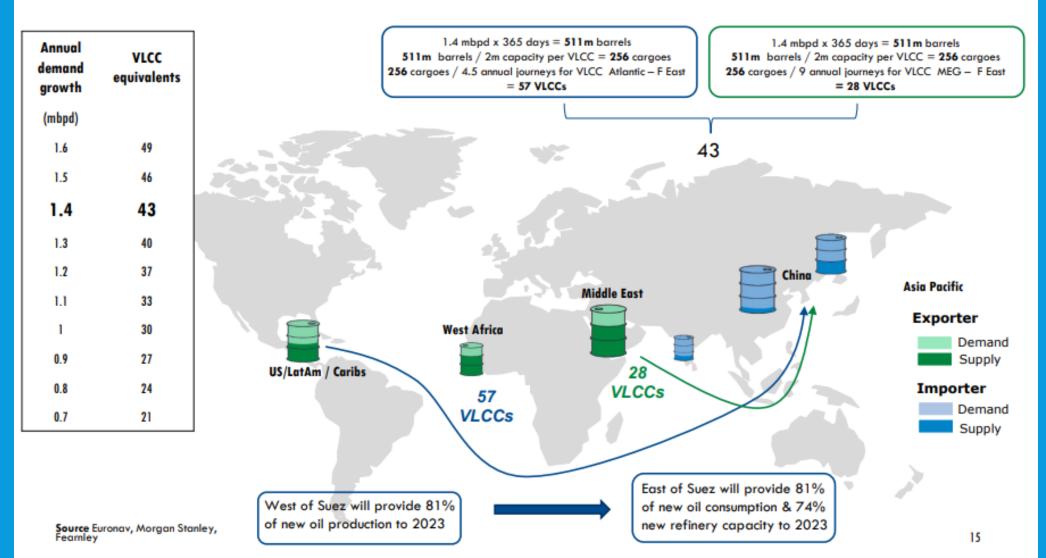

Duly endorsed Document to be kept with replacement engine's EIAPP Certificate

### HOW TO MOVE FORWARD?

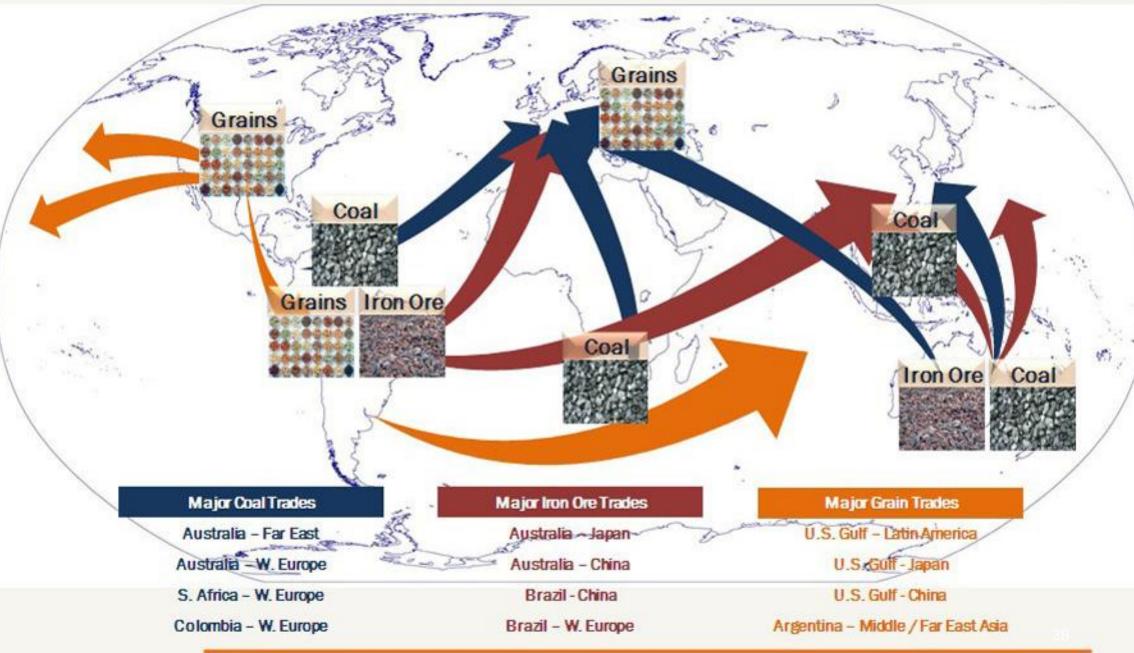
- Based on the Regulatory requirements, following factors will affect the Owners in their choice of TIER Engines
- 1. Date of Construction of Ship
- 2. Date of Major Modification w.r.to Engines & Aux Engines > 130 kW
- 3. Trading Patterns.
- 4. CAPEX & Economic Life of the Vessel.

Some MAJOR Trade Routes for Different types of Vessels are illustrated here after for the Owners to make an informed decision for Engine Choice.

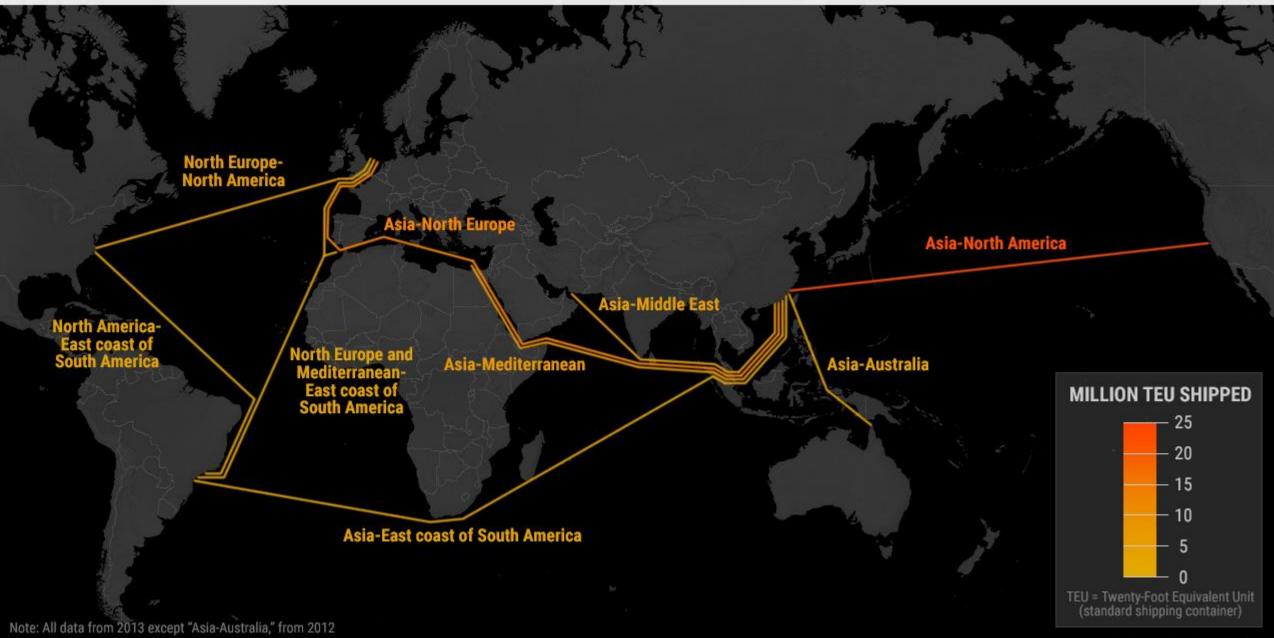
## **VLCC TRADING ROUTES**




## TON MILES - INCREASING


#### Demand growth all from Far East - key for tankers is where supply is sourced from

Atlantic Basin - Far East route


Middle East - Asia Pacific route



## BULK CARRIER TRADING PATTERNS



#### **TOP CONTAINER SHIP TRADE ROUTES**



Source: World Shipping Council

©2016 Geopolitical Futures

# CHOOSE WISELY & JUDICIOUSLY

## **THANK YOU**